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Recently, the interest in growing solids and modeling of growth 

has increased dramatically owing to the development of new 

technologies of manufacturing of new promising materials as well as 

to the extension of continuum mechanics approaches to nonclassical 

problems. Examples of growing bodies include growth of bones and 

tissues, solids with phase transformations, and growth of crystals and 

thin films. Despite various and in general distinct growth 

mechanisms, these problems have many common features. These 

include the a priori unknown position of the interface, ageing or 

changing of mechanical properties with time, possible absence of 

natural reference placement, nonlinearity related to the motion of 

interface, etc. Various approaches to the modeling of growth of solids 

can be found for example, in [1–9]. In particular, one has to 

distinguish between volumetric and interfacial types of growth. In 

what follows, we consider interfacial growth, where a solid grows by 

attaching particles or thin layers to its surface. 

The aim of the lecture is to consider models of growing plates. 

This problem is important at least for two reasons. First, the 

mechanics of ―growing‖ thin-walled structures is useful for modeling 

thin films growth in various manufacturing methods.   The second 

reason is that 2D models do not require detailed information on the 

microstructure of a thin film across its thickness. Indeed, the 

effective mechanical properties of plates and shells inherit the 

microstructure of material as integral characteristics. Our approach is 

based on the application of two Euler laws for modeling thin-walled 

structures. First, we consider the balance of momentum and moment 

of momentum for a system of mass points and similar balance 
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equations for a solid body. The momentum and the moment of 

momentum of n mass-points with respect to the point o with the 

radius-vector 0r  are B 
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respectively. So we formulate two balances as follows 
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Here F  and C  are the total (resultant) force vector and the total 

torque (resultant moment) with respect to point o, respectively, ri is 

the position of ith mass-point, vi is its velocity. For any portion of a 

solid similar balance laws are valid 
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Here f and t are the densities of the mass and surface forces forces, 

respectively.  

We modell grows as a deposition of mass-points to the solid 

surface. In a similar way we formulate two-dimensional Euler‘s laws 

for nonlinear shells. In the case of a shell with base surface w we 

have 
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Here q and m are the surface densities of the forces and the moments 

acting on the shell surface, and ts and ms are contour loads, see [10] 

for details. 

The main idea of reduction procedure from 3D equations to 2D 

ones is similar to the widely use through-the-thickness procedure in 

the nonlinear theory of shells [11]. Here this reduction also includes 
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the properties of mass points.  We consider the Euler laws for the 

―solid—system of mass points‖ system in an arbitrary cylindrical 

region and for its 2D analogue. A comparison of the integral 3D and 

2D formulations leads to relations between the 3D constitutive 

equations of this system and the 2D analogs. Various modes of mass 

point deposition are considered. Similarities between the models of 

growing shells and shells with surface stresses [12] are discussed. 
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