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Introduction: Interface phenomena are of great importance in 

many areas (e.g., physics, mechanics, chemistry, and biology) and 

have been intensively studied over many years; e.g., see [1– 6]. A 

typical example of an interface dividing phases is the boundary of a 

melting ice piece surrounded by water (Stefan problem, see [7, 8]). 

Generally, interfaces can be classified (at least) by their geometry 

(sharp or diffusive), by their relation to the remaining body 

(consisting of the same body point for all time or not) as well as by 

their functionality (equipped with own thermodynamic behavior or 

not). Although many investigations have been performed, there 

remain open questions both in modeling as well as in investigation of 

the arising mathematical problems, which are as a rule of free-

boundary type. 

Aims of the contribution: We deal with the general 

(mathematical) modeling of sharp interfaces (i.e., two-dimensional 

surfaces within a three-dimensional body) without and with own 

thermodynamical activity (i.e. with interfacial densities, fluxes, and 

supplies). Questions of regularity of the arising quantities will be 

also addressed. Moreover, we present a classification of sharp 

interfaces taking their relation to the remaining body as well as their 

thermodynamic behavior into account. Finally, we discuss a model of 

a shrinking body (e.g., due to mechanical treatment) in the 

framework of sharp singular interfaces. 

Some aspects of modeling of sharp interfaces: A three-

dimensional material body is identified with its reference 

configuration   (= closure of a bounded Lipschitz domain   

representing the inner body points). At the beginning 0=t ,   is 

assumed to be a disjoint composition of two sub-domains (0)A , 
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(0)B  representing the phases A  and B  and of an interface (0)  

separating (0)A  and (0)B :  

.=( 0)( 0),=( 0)( 0),=( 0)( 0)( 0) ,( 0)( 0)=  BABABA  (1) 

 Due to possible phase changes, there are ―time-dependent 

changes in the reference configuration‖ ([4], [Chapter 4]). We 

assume that for all ][0,Tt  or [[0,t  ( 0>T  - given process 

time)  

( ) ( ) ( )A Bt t t   
  homeomorphic image of the unit 

sphere in 3
R   (2) 

.=)()()(,=)()(  ttttt BABA  

The sets )(tA  and )(tB  represent those body points which 

at the instant t  belong to the phase A  and B , respectively, within 

the reference configuration (see Fig. 1, left and center).  

 

   
 

Figure 1:  Cross-section of a two-phase body   with time-

dependent interface )(t  in material representation at the beginning 

(left), at instant []0,Tt  (center), and in current representation at 

instant t . Note that generally the interface is not smooth. 

Here the body motion χ 
3][0,: R T  is assumed to be 

continuous. It bijectively maps the reference configuration   onto 

the current configuration )(t  for all ][0,Tt  (see Fig. 1, right). 

As a consequence, for all 0>t  the motion χ maps the (possibly 

smooth) interface )(t  (within the reference configuration) onto its 

counterpart =)(t )),(( tt . An interface is called material if it is 

formed by the same body points for all time:  
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).(0),(=)((0),=)(0> tttt    (3) 

Contrary to this, we call an interface singular if the relation (3) 

does not hold. Thus, a singular interface cannot be described by the 

body motion alone. 

A crucial feature of modeling is that the motion χ is only smooth 

up to the interface from either side but generally not across it. As a 

consequence, the deformation gradient F and the body velocity υ are 

generally not continuous across the interface. Moreover, the local 

balances (mass, impulse, ...) at the interface contain jumps of bulk 

quantities. For interfaces with own thermodynamic behavior, these 

interfacial local balances are partial differential equations involving 

jumps (see [2, 4, 5]). At interfaces without own thermodynamic 

activity, there are only pure jump conditions (see [1, 3, 6]). 

Moreover, we deal with an intermediate type of interfaces bearing 

only supplies (type II in our denomination). This leads to 

nonhomogeneous jump conditions allowing a not too complex 

modeling. 

A model of a shrinking body: As an example we present a 

model of a body undergoing a loss of material in the framework 

presented here. A workpiece may lose material due to mechanical 

treatment (turning, milling, e.g.). To avoid too high complexity, this 

process can be modeled as a two-phase body with a singular 

interface. One phase represents the shrinking body, and the other one 

its lost material. Assuming that this removed material has no 

essential retroactivity to the body, one can avoid complex modeling 

of the behavior of this second phase. Thus, in exchange, we consider 

a modified model, making the following assumptions.   The part of 

the body‘s surface at which material is lost is regarded as a singular 

interface. Its velocity is caused by mechanical (and/or thermal) 

effects. The engineering details are extraneous here.  At the interface, 

the loss of material is modeled by an interfacial mass supply (more 

precisely, by a sink). In view of this, there arise an interfacial loss of 

impulse, energy and entropy.  All densities and supplies associated 

with the outside (i.e., the phase of removed material) are assumed to 

vanish. There may be normal fluxes from the outside at the interface.  
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The interface is considered as a type S-II interface, i.e., it is singular 

and only interfacial supplies are allowed which are in balance with 

the corresponding jumps of bulk quantities across the interface.  The 

(shrinking) body may behave as a deformable solid (e.g., an 

elastoplastic material).  As a result, we obtain a consistent model 

described by a coupled system of bulk equations with boundary 

conditions related to momentum and heat transfer at the singular 

surface. 

Outlook: The final aim is to develop a model for singular 

interfaces with full thermodynamic activity and apply it to phase 

transformations in steel in the framework of mathematical 

homogenization. 
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