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The technology of additive manufacturing are now under 

intensive development. The advantages of such technology are well 
known, however, their implementation causes a number of 
challenges. Among others, one can point to the problem for 
minimizing of the distortion of geometrical shape that is most 
significant with manufacturing of thin-walled structures. Present 
communication deals with the issues of mathematical modeling for 
the distortion of thin-walled solids caused by additive technological 
process and identification of parametric models from experimental 
data. 

As it was shown in [1-2] the growing bodies can be viewed as a 
special class of inhomogeneous bodies whose inhomogeneity is 
caused by junction of incompatible deformed parts. In what follows, 
we use the concept of a body as a smooth manifold equipped with a  
material connection [3-4]. The notion of  material connection 
formalizes the idea of a local uniform reference configuration that 
brings an infinitesimal neighborhood of a material point into some 
uniform, typically natural strain state. In the simplest cases, one can 
bring the entire body into a uniform state by some global 
configuration. In general, one cannot simultaneously bring 
infinitesimal neighborhoods of all material points into a uniform 
state by a smooth mapping. For these a materially uniform body, i.e. 
a body all of whose material points are of the same kind, possesses 
some intrinsic (structural) inhomogeneity. 
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Consider growing bodies representable as continuous families 
of nested bodies [4]. A  layerwise growing body is a continuous 
family of bodies monotone with respect to inclusion, i.e.  

, (1) 

where  is an open interval. Bodies represent 
themselves in the physical space  as shapes. Every shape is the 
image of a configuration . To each element of the 

family (1), we assign two shapes, a reference shape  and 

an actual shape . 

We assume that the bodies  are materially uniform, simple, 
and elastic, so that their response can be described by the constitutive 
equation , where  is the response functional. The 

smooth tensor field  represents the local distortion and admits the 

multiplicative decomposition , where  is the 
conventional strain gradient, i.e., the linearization of the mapping 

. The tensor field  is compatible: there exists a 

vector field with gradient . This property is not true in general for 

the smooth tensor field , which is called an implant field [4] and is 
a field of linear transformations that combines the incompatible 
infinitesimal parts without gaps. 

Let  be the family of vector fields on  specifying the 
external bulk forces. Although the form of momentum equations in 
the bulk is identical to the classical one  

 (2) 

the equations on the boundary  are distinctive:  

 (3) 

Here  is the velocity field,  is the mass density,  is the 

growth velocity, and  and  are predefined families of fields. The 

former defines the traction on the boundary , and the latter 
defines the  tension of the boundary treated as an elastic material 
surface in contact with a three-dimensional elastic solid [5]. The 
vector  is the unit outward normal to ,  is the projection 

onto the corresponding tangent plane, and  is the jump of a field 

on the surface . 

In the present communication we assume that all bodies  
belong to the class of transversely growing shell [6], i.e. each 
reference shape  is bounded by an overall ruled surface  and 
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pairs of face surfaces  and  whose shape and position depend 
on the evolution parameter . 

In the framework of any shell theory, one has to choose certain 
representation of the displacements by an ordered set of  kinematic 
fields  defined on a 2D manifold  (the reduction surface) 
and introduce integration over thickness, i.e., along the normal 
coordinate  from  to . This procedure gives the  stress 

resultant tensor  and the  stress couple tensor :  

 (4) 
Here the  are some ''reduced'' stresses related to the stress 

tensor components by a reduction procedure that depends on the 
chosen theory [8]. In this regard, one has the following mappings:  

 
 (5) 

According to common considerations typical of shell theories, 
the tensor fields (4) should satisfy the equations of motion  

 
Here  is an appropriate surface Hamilton operator,  is a 

vector invariant of a tensor, and  and  are external force and 
moment fields distributed over the reduction surface. The matrices 

 and  are the inertia matrices, and  and  represent 
''dissipative'' terms due to the last expression in Eq. (3). 

In very simple cases, the implant field  is predefined for all 
values of the evolution parameter . But in most cases we have to 
determine  from some conditions corresponding to the evolution 
process, particularly from predefined displacements of the face 
boundaries or their membrane tension:  

 (6) 

Note that  and  actually are the surface stresses that act on 

the face boundaries  and . Thus, the equations (6) turn the 
evolution problem into a family of problems for shells with surface 
tension [9]. 
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The distortion of thin-walled structure depends on implant field 
. In turn,  is implemented by the additive process. In this 

regard one could be tasked with experimental identification of the 
distortion in the various conditions of an additive process in the 
framework of proposed model. Experimental procedure is based on 
holographic interferometry of shape distortion during the 
stereolithographical process. The experimental setup includes an 
open stereolithographical system implemented on a vibration-
isolated table together with the installation for holographic 
interferometry. The form of the object being created is designed to be 
a thin-walled cylindrical tube with base. The interferometrical system 
records the evolution of displacements field for the base in time. 
Measured data and the corresponding inverse problem solution allow 
us to identify the field  with respect to various regimes of additive 
process. 

This work was supported the RFBR under Grant 15-08-06330 
and Grant 14-01-00741. 
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