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A lot of natural phenomena and artificial processes are 

accompanied by deformation, non-uniform heating, and changing of 

the material composition of solids that flow simultaneously. 

Examples include formation of sedimentary, biogenic, volcanic 

rocks; crystallization, in particular snowflakes formation; 

electroplating, physical and chemical vapor deposition; solidification 

of melt; welding. From the mechanical point of view, such solids are 

classified as growing solids [1-3]. To determine the 

thermomechanical state of growing solids, one has to take into 

account the history of growth, or, better to say, the scenario of solid 

creation, even if locally the material is purely elastic (for example, 

belongs to the class of linearly thermoelastic materials). The 

mathematical description of this specific memory is manifested, in 

particular, by incompatible distortion fields and the corresponding 

residual stresses that cannot be removed by any smooth deformation. 

In this regard, mathematical models of growing bodies have much in 

common with models that appear in continual theory of defects. Such 

models require nonclassical methods for the statements of boundary 

value problems as well as for the construction of their solutions. 

Unlike the general theory of growing solids, linear 

thermomechanical problems for growing solids go back a long way. 

One of them is the heat conduction problem with a moving 
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boundary, which has been studied for more than 150 years. It was 

first stated by Lamé and Clapeyron in 1831. Notable research in this 

area is due to Joseph Stefan: he solved the problem while calculating 

how quickly an ice layer on water grows [4]. 

In the classical Stefan problem, the following conditions on the 

moving boundary (which separates the growing body and the 

environment) are stated: the temperature is continuous, whereas the 

heat flux has a discontinuity. The value of discontinuity is 

determined by the physical parameters of the formation of a new 

phase (for example, by the latent heat of crystallization). The 

generalized Stefan model assuming that the temperature at the 

interface is discontinuous as well was stated in [5]. This model, in 

particular, describes the dynamics of deposition processes in 

vacuum. 

The subject of the present study is a growing linear 

thermoelastic deformable solid whose growth is due to the 

continuous flow (evaporation) of the material onto the boundary, 

with account of the fact that the temperature of the boundary differs 

from the temperature of the deposed material. We suppose that at the 

moment of joining a material particle (which, from the physical point 

of view, should be seen as a set of atomic-scale particles extensive 

enough to determine the thermodynamic variables) the temperature 

on the interface changes abruptly, causing an elementary thermal 

shock similar to one in the problem of V.I. Danilovskaya [6]. From 

this standpoint, we study a model problem for a parallelepiped whose 

material composition varies over time owing to the continuous 

joining of material to one of its faces. It is assumed that the growing 

surface being initially flat remains flat throughout the process of 

growth and moves progressive, generally, at a variable rate. 

Physically, this process corresponds to the idealized uniform 

deposition of material on a flat substrate. It should be noted that such 

theoretical studies were carried out for growing bodies of various 

canonical shape, in particular for a ball [7,8], but the  statement of 

boundary conditions consistent with the thermomechanics of growth 

remained controversial. As a rule, it was assumed that the 
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temperature on the growing boundary coincides with the temperature 

of the incoming material. (Here one can see an analogy with the 

classical Stefan problem.) However, a detailed study of nonstationary 

fields for the joining of a large number of discrete thin layers showed 

that the model with prescribed temperature on the boundary gives 

adequate physical description of the processes only under the 

condition that the characteristic time of the growing process is much 

greater than the characteristic time of relaxation of nonuniform 

thermal fields in the bulk of the growing solid [9]. In this regard, it is 

appropriate to consider the growing solid with discontinuous 

conditions for both the temperature and the heat flux (an analog of 

the generalized Stefan problem),  the jump value being related to the 

characteristics of the growth process. 

The statement of the boundary condition on the growing 

boundary with a detailed description of the physical (and chemical) 

processes seems to be extremely complicated and beyond the scope 

of this paper. The present results should be regarded as a rough 

approximation based on the following hypotheses.   

 The joining material is layered; i.e., in an infinitesimal time, a 

layer of constant infinitesimal thickness is joined to the body. 

 At the moment of joining, the material layer changes its 

temperature by a finite value during the infinitesimal time 

interval, thereby causing an infinitesimal heat shock on the 

growing boundary. 

 The heat transfer with the environment does not occur.  

The model based on these hypotheses can be considered as an 

idealization of a thin thermal barrier layer formed in a neighborhood 

the growth boundary. 

Some assessment of the applicability of such a model can be 

given by comparing the stress and strain rate fields with the 

corresponding fields obtained in the framework of the model for 

discretely growing solids. To this end, we consider a sequence of 

such problems with increasing number of layers and decreasing 

thickness. However, it should be understood that a step function and 

a continuous function whose graphs are visually similar will never be 
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fully equivalent to each other, and therefore, discrete growth and 

continuous growth have a qualitative difference (although maybe 

inessential for engineering applications). 
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